If it's not what You are looking for type in the equation solver your own equation and let us solve it.
360=40y+2y^2
We move all terms to the left:
360-(40y+2y^2)=0
We get rid of parentheses
-2y^2-40y+360=0
a = -2; b = -40; c = +360;
Δ = b2-4ac
Δ = -402-4·(-2)·360
Δ = 4480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4480}=\sqrt{64*70}=\sqrt{64}*\sqrt{70}=8\sqrt{70}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-8\sqrt{70}}{2*-2}=\frac{40-8\sqrt{70}}{-4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+8\sqrt{70}}{2*-2}=\frac{40+8\sqrt{70}}{-4} $
| -17=-2y+-5 | | 50-5y=65 | | -15r=-14r+12 | | 1/2h-1/3h+11=8 | | 10-2z=-4 | | -1.7x=5(x+2.18) | | -1/2(15-10x)=2x | | 2z+1/6=3z+7/6 | | 245=5x^2 | | 10−2z=-4 | | 5^x+25^x=650 | | 3y+-y=-4 | | -146=126t+25t^2 | | 13w-11w=4 | | (1+x)^2.5=20 | | -6v-9-3=29 | | 13w−11w=4 | | -146=-66t+23t^2 | | 6-7(1-5s)=19 | | -15v−13=-16v | | 22-4b=-8(9b-6) | | 14d=-10+19d | | 2(3g+5)=1/2(12g+8) | | 18c=+-9c=9 | | 6(3y+2)=26-9y | | 8(6a-4)=27-5a | | 12b+20=13b | | 6x-2x(3x-7)=12 | | -5n+9-6n=34 | | -11-2n=-n | | 8+b-4b=5 | | (125)^2x-5=(625)^x-1 |